

Total Synthesis of (-)-Nakadomarin A

Simone Bonazzi, Bichu Cheng, Joseph S. Wzorek, and David A. Evans*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Supporting Information

ABSTRACT: The convergent synthesis of the polycyclic alkaloid (-)-nakadomarin A (1) is reported. The synthesis plan identified macrocyclic lactam 4 as one of the important synthons (eight steps). The other synthon (five steps) was bicyclo[6.3.0] lactam 5 containing a single stereocenter that controlled all of the subsequent stereochemistry during the assembly process. A silyl triflate-promoted cascade of 4 and 5 was used to assemble the bulk of the alkaloid skeleton with the exception of the C5–C6 bond. The nakadomarin synthesis was then completed in one additional step.

(–)-Nakadomarin A (1) is an alkaloid that was isolated in 1997 from the marine sponge *Amphimedon* sp. found off the coast of the Kerama Islands, Okinawa.¹ Biological evaluation of 1 has revealed a wide range of potential therapeutic attributes, including cytotoxic, antimicrobial, and antibacterial activities. While this alkaloid belongs to the manzamine family,² it is architecturally distinct. Both its advertised biological properties and structural complexity have highlighted nakadomarin A as an attractive target for synthesis and subsequent drug development research. Accordingly, a number of syntheses and projected routes to this target have been reported.³ Herein we report a new approach to the synthesis of this structure.

Previous approaches to 1 have relied upon the construction of the 15-membered-ring synthon as a late-stage event. In the present approach, we introduce the 15-membered macrocycle early in the synthesis for reasons to be described. The synthesis plan (Scheme 1) anticipated that nakadomarin A (1) might be obtained from bislactam 3 through selective reduction of the sixmembered lactam moiety followed by intramolecular alkylation of the iminium ion derived from 2 to form the final C5–C6 bond. We reasoned that 3 could be accessed through a Lewis acidpromoted double conjugate addition of macrocyclic lactam 4 and lactam 5. This transformation could also be viewed as a formal [4 + 2] cycloaddition. A significant drawback of this plan lay in the lack of an obvious π -facial bias in the reaction of 4 with 5, which could lead to an undesired diastereomeric adduct.

Scheme 1. Synthesis Plan for (-)-Nakadomarin A

The decision to proceed with the plan illustrated in Scheme 1 was fortified by the potential interplay of competing C–O transition-state dipole effects that might favor an anti orientation of the dipoles in the formation of 3. If successful, the stereocenter incorporated into bicyclic lactam 5 could be the singular chiral element in this transformation and might be expected to control the stereochemical outcome of the whole process.

The synthesis of macrocyclic lactam 4 was accomplished in eight steps on a multigram scale (Scheme 2). Commercially available 3-furfural (6) was iodinated in 52% yield using the literature procedure.⁴ Aldehyde 7 was protected as its dimethyl acetal and directly submitted to Heck coupling with allyl alcohol to afford 8 (69% over two steps).⁵ Subsequent Wittig olefination with phosphonium salt 9⁶ followed by acidic isolation incorporated the cis olefin while removing the acetal, affording aldehyde 10 in 89% yield. A Horner–Wadsworth–Emmons Z-olefination reaction with 11 provided methyl ester 12 in 90% yield (Z/E > 20:1). This ester was then hydrolyzed, and removal of the Boc protecting group followed by cyclization of the product using HBTU gave 4 in 74% yield. The product was recrystallized from MeOH (mp 125–126 °C) and characterized by X-ray analysis.

The synthesis of bicyclic lactam **5** (Scheme 3) featured the use of the Ellman chiral *tert*-butylsulfinamide⁷ methodology. Acrolein was condensed with (R)-(+)-2-methyl-2-propane-sulfinamide mediated by Ti(O*i*Pr)₄ to provide a 97% yield of chiral imine **13**,⁸ which was subjected to Zn-mediated allylation

```
Received: May 9, 2013
Published: June 10, 2013
```

Scheme 2. Synthesis of Macrocyclic Lactam 4^a

^{*a*}Reagents and conditions: (a) *n*-BuLi, morpholine, THF, -78 °C, then *s*-BuLi, then I₂; (b) CH(OMe)₃, TsOH·H₂O, 3 Å molecular sieves (MS); (c) Pd(OAc)₂, allyl alcohol, NaHCO₃, DMF, 50 °C; (d) KHMDS, BocNH(CH₂)₅PPh₃I (9), -78 to 0 °C, then HCl; (e) CH₃O₂CCH₂P(O)(OCH₂CF₃)₂ (11), 18-crown-6, KHMDS, THF, -78 °C; (f) NaOH, MeOH, H₂O, rt; (g) TFA, DCM, 0 °C to rt; (h) *N*,*N*,*N*',*N*'-tetramethyl-*O*-(1*H*-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU), NEt₃, CH₃CN, 50 °C.

Scheme 3. Synthesis of Bicyclic Lactam 5^a

"Reagents and conditions: (a) Zn, LiCl, DMF, H_2O (1 equiv); (b) HCl, MeOH, then NaOH; (c) NaH, 17, DMF; (d) Grubbs I (3 × 0.5 mol %), DCM (0.002 M).

following literature precedent.⁹ A mixture of **13** and ethyl 2-(bromomethyl)acrylate (**14**)¹⁰ was treated with Zn powder and LiCl in *N*,*N*-dimethylformamide (DMF) to give the desired chiral amine **15**. In early experiments, the use of excess **14** afforded an N-alkylation byproduct. This reaction was circumvented by the addition of 1 equiv of water to the reaction mixture to induce protonation of the Zn(II) amide intermediate. After reaction optimization, **15** was obtained in high yield. The sulfinamide was deprotected under the usual acidic conditions, and α -methylene- γ -lactam **16** was then N-alkylated with 1-iodo-5-hexene (**17**)¹¹ to give **18**, which was then subjected to ringclosing metathesis to afford **5** in 83% yield.^{3e}

With fragments 4 and 5 in hand, we investigated the cascade reaction/cycloaddition, which could be initiated by any number of Lewis acids (Scheme 4). Initial studies were directed to conditions that would facilitate activation of 4 and induce conjugate addition to 5. With these constraints in mind, we selected *tert*-butyldimethylsilyl triflate (TBSOTf) as a promoter.¹² A 1:1 mixture of 4 and 5 was treated with TBSOTf under a variety of conditions. After a number of attempts, the optimized formation of the polycyclic product 3 was observed. It was found that slow addition of 5 to a solution of 4 activated by TBSOTf in the presence of *i*Pr₂NEt successfully afforded 3 in 79% yield with 9:1 dr (Scheme 4). Optimal results were obtained with 2.0 equiv of freshly distilled TBSOTf and 1.8 equiv of *i*Pr₂NEt [0.3 M in 1,2-dichloroethane (DCE)]. Attempts to catalyze the reaction with TfOH alone failed, suggesting that the

reaction is silyl-catalyzed. The major diastereoisomer **3** was recrystallized, and its structure was determined by X-ray crystallography (Figure 1).

Figure 1. X-ray structures of lactams 3 and 24 (Scheme 4).

Efforts were then directed toward the selective reduction of the six-membered lactam in 3. Unfortunately, the use of conventional reducing agents (diisobutylaluminum hydride or $LiAlH_4$) resulted in either complete reduction of the five-membered lactam moiety or a mixture of partial reduction products. Selective reduction of the six-membered lactam was achieved through regioselective alkylation of 3 with Me₃OBF₄ followed by NaBH₄ reduction of the activated amide intermediate 21 (Scheme 4). Semireduction product 2 was recrystallized, and its structure was confirmed by X-ray analysis. It is significant that the use of the slightly more hindered Meerwein salt (Et_3OBF_4) resulted in significantly reduced reduction selectivity. This implies that steric effects could play some role in the discrimination between the two competing amide carbonyl alkylation events; nevertheless, there appears to be little precedent for these observations. To complete the synthesis, treatment of lactam 2 using modified conditions similar to those reported by Dixon and co-workers^{3h} (Tf₂O and 2,6-di-*tert*-butyl-4-methylpyridine) facilitated the rapid formation of intermediate 22, which was trapped by the furan to afford intermediate 23. Subsequent reduction using NaBH₃CN afforded (-)-nakadomarin A (1) in 52% yield from 3.

The transformation of bislactam 3 to 1 was then refined to a one-pot procedure. Upon treatment of 3 with Tf_2O and 2,6-ditert-butyl-4-methylpyridine followed by the addition of sodium bis(2-methoxy)aluminum hydride (Red-Al), both the iminium ion and the six-membered lactam moiety were reduced, affording 1 in 69% yield.

Cascade diastereoselection. An attempt to identify the plausible origins of the stereochemical control in the reaction cascade used to merge fragments 4 and 5 was undertaken. While the single stereocenter embedded in 5 provides one of the stereochemical control elements, it was possible that characterization of the minor product diastereomer might reveal other transition-state control elements. Our preconceived idea of the structure of the other possible cascade diastereomer is shown in Scheme 1. After a scale-up of the transformation to give 3 (9:1 dr), we were able to isolate from the product mixture the minor lactam diastereomer 24 (mp 95–97 °C). Its X-ray structure is also

Scheme 4. The Cascade Reaction^a

^{*a*}Reagents and conditions: (a) 4, TBSOTf, *i*Pr₂NEt, DCE, rt, then 5, DCE, 14 h; (b) Me₃OBF₄, 4 Å MS, DCM, rt, 2 h, then NaBH₄, MeOH, 0 °C to rt; (c) Tf₂O, 2,6-di-*tert*-butyl-4-methylpyridine, DCM, rt, 30 min, then NaBH₃CN, MeOH, rt; (d) Tf₂O, 2,6-di-*tert*-butyl-4-methylpyridine, DCM, rt, 2 h, then Red-Al, -78 to 60 °C, 3 h.

provided in Figure 1. Compound 24 was unexpectedly derived from the addition of the achiral unsaturated lactam 4 to the more congested concave face of the bicyclic lactam 5.

Kinetic selectivity and product stability. The computed energies $(B3LYP/6-31G^*)$ of the four possible silicon-alkylated product diastereomers **25–28TMS** are provided in Figure 2. The

Figure 2. Computed energies $(B3LYP/6-31G^*)$ of silylated vs protonated products.

centrosymmetric trimethylsilyl moiety was used in place of the analogous TBS analogue to simplify the computations. As with any compromise, the relative energies of 25-28TMS might

under-represent the actual energy differences between **26TBS** and **27TBS**, as the TBS moiety is more sterically demanding than its TMS counterpart. Nevertheless, the energies of these structures substantiate that the most stable silvlated structure is **25TMS**, an observation that is consistent with the structure of the major kinetic product diastereomer **3**. It is also evident that **27TMS** is lower in energy than **26TMS**, the minor diastereomer incorrectly projected in Scheme 1. It is evident that both of the isolated product diastereomers (**3** and **24**) have their respective C=O dipoles disposed in an anti orientation, as predicted by the computations.

Calculations for the protonated product diastereomers 25-28H were also performed for comparison to probe the potential steric effects of the silicon substituent. The stability order of 25-28H is quite different than that of 25-28TMS. In this set of structures, 26H is the most stable diastereomer. Hence, for structures 25-28H, the computed product energies suggest that C–O dipole effects alone are not a major factor in determining the diastereomer stability and possibly the kinetic selectivities. We thus conclude that the structure of the reaction promoter (TMSOTf or TBSOTf) seems play a role in the observed reaction diastereoselectivity. It also appears that this reaction, first reported by Ihara,¹² could well be a concerted rather than stepwise transformation.

In conclusion, we have reported a convergent synthesis of (-)-nakadomarin A (1) from commercially available 3-furfural. The double Michael/cycloaddition reaction facilitates the rapid construction of the target skeleton, while the stereochemical outcome is dictated by the single stereocenter embedded in bicyclic lactam 5.

Journal of the American Chemical Society

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and spectroscopic, crystallographic, and computational data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

evans@chemistry.harvard.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by the National Institutes of Health (Grants GM-33328-24 and GM-081546-04). Fellowships were provided to S.B. by the Stefano Franscini Fund, the Swiss National Science Foundation (PBEZP2-125725), and the Novartis Foundation; B.C. was supported by the Evans—Novartis Fund at Harvard University. We also thank Dr. Shao-Liang Zheng for his help with X-ray data collection and structure determination.

REFERENCES

(1) (a) Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. J. Org. Chem. **1997**, 62, 9236. (b) Kobayashi, J.; Tsuda, M.; Ishibashi, M. Pure Appl. Chem. **1999**, 71, 1123.

(2) For the isolation of the related compound manzamine A, see:
(a) Sakai, R.; Higa, T. J. Am. Chem. Soc. 1986, 108, 6404. (b) Magnier, E.; Langlois, Y. Tetrahedron 1998, 54, 6201. (c) Nakagawa, M. J. Heterocycl. Chem. 2000, 37, 567. For total syntheses of manzamine A, see:
(d) Winkler, J. D.; Axten, J. M. J. Am. Chem. Soc. 1998, 120, 6425.
(e) Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121, 866. (f) Humphrey, J. M.; Liao, Y.; Ali, A.; Rein, T.; Wong, Y.-L.; Chen, H.-J.; Courtney, A. K.; Martin, S. F. J. Am. Chem. Soc. 2002, 124, 8584. (g) Toma, T.; Kita, Y.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 10233. (h) Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am. Chem. Soc. 2012, 134, 17482–17485. For a biosynthesis of manzamine A, see: (i) Baldwin, J. E.; Whitehead, R. C. Tetrahedron Lett. 1992, 33, 2059.

(3) For total syntheses of nakadomarin A, see: (a) Nagata, T.; Nakagawa, M.; Nishida, A. J. Am. Chem. Soc. 2003, 125, 7484. (b) Ono, K.; Nakagawa, M.; Nishida, A. Angew. Chem. 2004, 116, 2054. (c) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465. (d) Jakubec, P.; Cockfield, D. M.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 16632. (e) Nilson, M. G.; Funk, R. L. Org. Lett. 2010, 12, 4912. (f) Kyle, A. F.; Jakubec, P.; Cockfield, D. M.; Cleator, E.; Skidmore, J.; Dixon, D. J. Chem. Commun. 2011, 47, 10037. (g) Cheng, B.; Wu, F.; Yang, X.; Zhou, Y.; Wan, X.; Zhai, H. Chem.-Eur. J. 2011, 17, 12569. (h) Jakubec, P.; Kyle, A. F.; Calleja, J.; Dixon, D. J. Tetrahedron Lett. 2011, 52, 6094. (i) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 479, 88. For a formal synthesis of nakadomarin A, see: (j) Stockman, R. A.; McDermott, P. J.; Newton, A. F.; Magnus, P. Synlett 2010, 559. (k) Inagaki, F.; Kinebuchi, M.; Miyakoshi, N.; Mukai, C. Org. Lett. 2010, 12, 1800. For synthetic studies toward (-)-nakadomarin A, see: (1) Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. (m) Fürstner, A.; Guth, O.; Düffels, A.; Seidel, G.; Liebl, M.; Gabor, B.; Mynott, R. Chem.—Eur. J. 2001, 7, 4811. (n) Nagata, T.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2001, 42, 8345. (o) Magnus, P.; Fielding, M. R.; Wells, C.; Lynch, V. Tetrahedron Lett. 2002, 43, 947. (p) Leclerc, E.; Tius, M. A. Org. Lett. 2003, 5, 1171. (q) Ahrendt, K. A.; Williams, R. M. Org. Lett. 2004, 6, 4539. (r) Young, I. S.; Williams, J. L.; Kerr, M. A. Org. Lett. 2005, 7, 953. (s) Nilson, M. G.; Funk, R. L. Org. Lett. 2006, 8, 3833. (t) Deng, H.; Yang, X.; Tong, Z.; Li, Z.; Zhai, H. Org. Lett. 2008, 10, 1791. (u) Haimowitz, T.; Fitzgerald, M. E.; Winkler, J. D. Tetrahedron Lett. 2011, 52, 2162.

(4) Lee, G. C. M.; Holmes, J. M.; Harcourt, D. A.; Garst, M. E. J. Org. Chem. **1992**, 57, 3126.

(5) Jeffery, T. Tetrahedron Lett. 1991, 32, 2121.

(6) (a) Mattingly, P. G. Synthesis **1990**, 366. (b) Nantermet, P. G.; Barrow, J. C.; Lindsley, S. R.; Young, M. B.; Mao, S. S.; Carroll, S.; Bailey, C.; Bosserman, M.; Colussi, D.; McMasters, D. R.; Vacca, J. P.; Selnick, H. G. Bioorg. Med. Chem. Lett. **2004**, *14*, 2141.

(7) (a) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. **1997**, 119, 9913. (b) Ellman, J. A. Pure Appl. Chem. **2003**, 75, 39. (c) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. **2002**, 35, 984.

(8) (a) Raghavan, S.; Krishnaiah, V.; Sridhar, B. J. Org. Chem. 2010, 75, 498. (b) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278.

(9) Shen, A.; Liu, M.; Jia, Z.-S.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010, 12, 5154.

(10) **14** is commercially available from Sigma-Aldrich (CAS no. 17435-72-2). It can also be prepared in two steps from ethyl acrylate. See: (a) Yu, C.; Liu, B.; Hu, L. *J. Org. Chem.* **2001**, *66*, 5413. (b) Villieras, J.; Rambaud, M. *Synthesis* **1982**, 924.

(11) Baldwin, J. E.; Bischoff, L.; Claridge, T. D. W.; Heupel, F. A.; Spring, D. R.; Whitehead, R. C. *Tetrahedron* **1997**, *53*, 2271.

(12) (a) Takasu, K.; Nishida, N.; Ihara, M. *Tetrahedron Lett.* 2003, 44, 7429. (b) Takasu, K.; Nishida, N.; Tomimura, A.; Ihara, M. J. Org. Chem. 2005, 70, 3957. (c) Ihara, M.; Takino, Y.; Tomotake, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1990, 2287. (d) Ihara, M.; Kirihara, T.; Kawaguchi, A.; Tsuruta, M.; Fukumoto, K.; Kametan, T. J. Chem. Soc., Perkin Trans. 1 1987, 1719. (e) Takasu, K.; Nishida, N.; Ihara, M. Synthesis 2004, 2222.